Food hygiene - the influence of microbial biofilms and problem identification

Lone Gram
Bacterial Ecophysiology and Biotechnology group

August 2015
gram@bio.dtu.dk

Outline

- Introduction
- Problems caused by persistent microorganisms
- Why do they persist?
- Consequences
- Cleaning and disinfection

Importance of bacteria in foods

- Problems
 - Illness
 - Spoilage

- Advantages
 - Preservation
 - Flavour, texture, ...

- No importance

How is hygiene controlled in the food industry?

- GHP (good hygienic practice=SSOP=pre-requisites)
 - buildings, lay-out, training of personnel, pest control, cleaning and disinfection

- HACCP
 - hazards – what can happen (likely)
 - critical control points – how and where can the hazards be eliminated or reduced to an acceptable level
Problem 1: Spoilage of marinated herring

- Raw material (herring in salt/acid) “sterile”

- Acid flavour and gas/bombage
 - isolate lactic acid bacteria and yeast
 - LAB + yeast traced to surfaces and equipment in the processing environment

Problem 2: Spoilage of ground turkey

- Raw material contains many spoilage bacteria

- Rapid spoilage due to *Pseudomonas* spp.

- Isolate pseudomonads from raw material, processing equipment and final product
 - spoilage-sub-types traced to meat grinder
 - identical sub-type isolated after 6 weeks
 - => “resident” flora
Problem 3:
Listeria monocytogenes on smoked fish

- Gram-positive, environmental bacteria
- Causes listeriosis (sepsis, meningitis, abortion)
- High mortality in risk groups
- Food-borne disease
- Psychrotrophic, halotolerant: grow in many foods
- Listeriosis may be caused by cheese, pate, frankfurters, smoked trout, smoked mussels

Listeria - in the news

- Maple Leaf Foods - *Listeria* linked to deaths
 - 57 reported cases, 22 deaths
- 220 products recalled; costs: 20 mill $ + 27 mill $
- One of 22 plants involved
- One-two of 11 production lines involved – found “lurking deep inside two meat-slicing machines”
- Re-opened after thorough cleaning and sanitizing (peroxy-acetic acid, QUATs, isopropyl alcohol, refrigeration gel, granular compound) and training of employees

Listeria - in the DK news

- Danish outbreak – spring/summer 2014
- 41 patients, 17 dead
- Source: “rullepølse” – up to 2 month incubation time
- ID’ed by genome analyses (SNP; single nucleotide polymorphism)

Listeriose in DK – clinical picture

Data from SSI
Problem 3: *Listeria monocytogenes* on smoked fish

• Preparation of cold-smoked fish
• processes do not eliminate *Listeria*
• parameters do not prevent growth
 • no CCP in the HACCP-plan
• ready-to-eat – no cooking by consumer

• Level should be as low as possible
• Source of product contamination?

Sources of *Lm* in smoked fish?

- Water
 • Low
 • 0-62% positive

- Raw fish
 • Typically 1%
 • 0 - 10% positive

- Final product
 • average on 5%
 • 0-84% positive;
 • large factory variation

Tracing *Lm* during fish processing

Differentiating between strains of the same bacterial species?

Subtyping (molecular, sero, phage, phenotype, genome)

Techniques used in epidemiology
Tracing *Lm* during fish processing

Randomly Amplified Polymorphic DNA (RAPD)

purify DNA, amplify with random primers, separate profile in agarose-gel

Strain number

1 2 3 4 5 6 7 8 9 10

Tracing *Lm* during fish processing

- Follow fish during processing
 - raw fish, fillets before salting, fillets after smoking, slicing, packaged product
- Sampling from surfaces during processing
- Sampling from processing environment
- Sampling after cleaning and disinfection

Fonnesbech Vogel et al. 2001. AEM

Number of isolates with RAPD type

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>R-A</td>
<td>S-A</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>1</td>
<td>63</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>13</td>
<td>63</td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>x</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

| Positive for *L. monocytogenes* | 17 | 13 | 05 | 08 | 39 | 19 | 09 | 03 | 15 |

| Total samples | 20 | 12 | 18 | 230 | 8 | 150 | 147 | 40 | 12 | 105 | 2 | 75 | 100 | 48 |

1. P = product, R = raw fish, R-A = raw fish area, S-A = smoking area; S-A = Slicing area

Wulff et al. 2006. AEM

Distribution of RAPD subtypes in fish processing environments

<table>
<thead>
<tr>
<th>RAPD-type</th>
<th>Smokehouse</th>
<th>Fish slaughter house</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Symbol</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

X Total | 28 | 43 | 46 | 32 | 46 | 7 | 29 | 7 | 238
Why does one Lm sub-type dominate?

Persistent versus non-persistent

- Most common in the environment?
- Adhere better to surfaces?
- Higher growth rate?
- More tolerant to preservation?
- More tolerant to drying?
- More tolerant to cleaning and disinfection?

<table>
<thead>
<tr>
<th>RAPD type</th>
<th>Water</th>
<th>Fish slaughter</th>
<th>Fish smoke</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BCB</td>
<td>8</td>
<td>2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>CBC</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DAA</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DCA</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DCB</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DCC</td>
<td>1</td>
<td>3</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>DCJ</td>
<td>7</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EDD</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FJC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAA</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HFE</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ICI</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>JFF</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>KCC</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>KIA</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>LGG</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MHH</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Hansen et al. JFP 2006

Lm in the environment

Lm adheres to inert surfaces

- Scanning Electron Micrograph (SEM) of Lm on a plastic surface
- Atomic-Force-Microscopy (AFM) of Lm on surface

Jensen and Kastbjerg in collaboration with CU and MMU

L. monocytogenes adhesion and biofilms

- Listeria monocytogenes biofilm formation in microtiter wells; measured as crystal violet staining

Jensen et al. JFP 2007
Growth rate, processing, drying, cleaning and disinfection

- \(Lm \) strains grow with similar growth rate
- \(Lm \) strains are inactivated similarly
- \(Lm \) survives drying for weeks/months in the presence of organic material and NaCl
- All \(Lm \) strains appear equally sensitive to disinfection

Process contamination - why

- Lack of cleaning and disinfection
- Wrong physical design
- Adhered bacteria
 - protected by slime, proteins
 - resistant to cleaning and disinfection?
- Special adhesion phenotype?

Proces contamination – why?
Lack of cleaning and disinfection

Cleaning and colonization of \(Listeria monocytogenes \)

Comparison of total aerobic count and % samples positive for \(Listeria monocytogenes \) from a food processing unit

Hejmarklaboratoriet and DTU Aqua 2008
Proces contamination – wrong design

Proces contamination – why?
Micro-design – surface topography

Listeria monocytogenes on a stainless steel surface
Shewanella putrefaciens on a stainless steel surface

Adhered bacteria may be resistant (?)

Reduction in *Listeria monocytogenes* by treatment with 0.1M NaOH / HCl

Survival of *L. monocytogenes* as planktonic (light) or adhered (dark) cells when exposed to Incimaxx

Kastbjerg and Gram 2008

Bakterial adhesion/removal depends on:

- The bacteria
 - species, strain, other bacteria, culture

- Surface
 - conditioning, roughness, hydrophobicity

- Flow
 - turbulent, stagnant

Presence of pseudomonads facilitate biofilm formation by *Listeria*

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Surface</th>
<th>log cfu/cm² after days:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>L. innocua</td>
<td>steel</td>
<td>5.7</td>
</tr>
<tr>
<td>(alone)</td>
<td>teflon</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>rubber</td>
<td>5.6</td>
</tr>
<tr>
<td>L. innocua</td>
<td>steel</td>
<td>6.7</td>
</tr>
<tr>
<td>+ P. aeruginosa</td>
<td>teflon</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>rubber</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Bourion and Cerf 1996. Sciences des aliments 16:151-156

Niche?

- A niche – also called "harbourage site"
 - a place in the processing area, where one/several microorganisms has become established and multiply
 - is a reservoir for the bacteria from where it spreads during processing
 - typically requires water (humidity) and dirt (nutrients)
Crack where cleaning is impossible

Cleaning and disinfection
- Purpose to remove/kill microorganisms
- Real life:
 - microbes detected after cleaning and disinfection
- Improvement:
 - new methods
 - how to compare?

“New” cleaning and disinfection
- Biochemically based
 - removal of microbial biofilms: cells, water, extracellular products: exo-polysaccharides, protein, DNA
- Physically based
 - removal by heat, ultrasound, oxidation, UV-light
 - sonosteam (steam and ultrasound)
 - ozon
 - UVC-light

“new” cleaning and disinfection

Pseudomonas aeruginosa biofilm on stainless steel (A) before and (B) after treatment with Pectinex Ultra

Johansen et al. 1997. AEM
Quantifying bacteria on surfaces ??

- Fluorescens mikroscopy
 - DNA-staining, rRNA-staining
- Removal from surface – quantification by plating
 - ultrasound, glass beads a.o.
- ATP-measurements
- Conductometric methods
- Real-time PCR to quantify

Conclusions / perspectives

- Equipment must be designed to allow cleaning
- Surfaces minimizing adhesion should be developed
- Understanding adhesion/ resistance in food microorganisms is required
- Microbial ecology of food processing
 - hot spots?
 - methods for quantification
 - procedures against attached bacteria
 - tolerance / resistance to biocides
 -