Introduction to working with biological sequence databases

Lars Rønn Olsen, PhD, Associate Professor
Technical University of Denmark
Program for today

Part 1
Lecture: Biological databases: GenBank
Exercise: searching GenBank for gene sequences and information

Part 2
Lecture: BLAST
Exercise: using BLAST for sequence similarity search

Part 3
Lecture: Biological databases: UniProt
Exercise: searching UniProt for protein sequences and information
Part 1: GenBank

Slides by Henrik Nielsen, Rasmus Wernersson, Lars Rønn Olsen
Learning objectives

Part 1: GenBank

After this session you will:

• Have an overview of the content of the GenBank database

• Know how to search for sequences and sequence information using basic and advanced keyword search

• Know about the FASTA format for storing biological sequences on the computer
NGS read mapping
Cost of sequencing
Background - Nucleotide databases

- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), USA
- Established in 1982.

EMBL, http://www.ebi.ac.uk/embl/
- European Bioinformatics Institute (EBI), England
- Established in 1980 by the European Molecular Biology Laboratory, Heidelberg, Germany
- Now part of **ENA**, the European Nucleotide Archive, http://www.ebi.ac.uk/ena/

DDBJ, http://www.ddbj.nig.ac.jp/
- National Institute of Genetics, Japan

Together they form
Nucleotide database growth

- Growth is roughly exponential

- But doubling time has increased from ~20 months (1990s) to ~50 months (2010)

- *The databases are public* — no restrictions on the use of the data within.

2018: ~208,000,000 sequences in GenBank alone!
Sequences on the computer: The FASTA format

>alpha-D
ATGCTGACCGACTCTGACAAGAAGCTGGTCTTGCAAGGTGTGGGAGAAGGTGATCCGCCACCCAGACTGTGGAGCCGAGGCCCTGGAGAGGTGCGGGCTGAGCTTGGGGAAACCATGGGCAAAGGGGGGCGACTGGGTGGGAGCCCTACAGGGCTGCTGGGGGTTGTTCGGCTGGGGGTCAGCACTGACCATCCCGCTCCCGCAGCTGTTCACCACCTACCCCCAGACCAAGACCTACTTCCACCACTTCGACTTGCACCATGGCTCCGACCAGGTCCGCAACCACGGCAAGAAGGTGTTGGCCGCCTTGGGCAACGCTGTCAAGAGCCTGGGCAACCTCAGCCAAGCCCTGTCTGACCTCAAGCGACCTGCATGCCTACAACCTGCGTGTCGACCCTGTCAACTTCAAGGGCGGGGACGGGGGTCAGGGGCCGGGGAGTTGGGGGCCAGGGACCTGGTTGGGGATCCGGGGCCATGCCGGCGGTACTGAGCCCTGTTTTGCCTTGCAGCTGCTGGCGCAGTGCTTCCACGTGGTGCTGGCCACACACCTGGGCAACGACTACACCCCGGAGGCACATGCTGCCTTCGACAAGTTCCTGTCCGGCTGTGTGCACCGTGCTGGCCGAGAAGTACAGATAA

>alpha-A
ATGGTGCTGTCTGCAACGACAAGAAGCAGTGAGGGCCGCTCTTCGGCAAAAAATCGGCGGCAGGCCCGGTGACCTGGGTGTGGTGAAGCCCTGGAGAGGTATGTGGTCATCCGTCATTACCCCCTCTCTTGTCTGTCTGTGACTCCATCCCATCTGCCCCCATACTCTCCCCCATCCATAACTGTCCCTTTCATATGGCCCTGGCCCTGTCTCATCTCTCCCCACCTGTCCCTGATTGCCTCTGTCCCCCAGGTTGGTCATCACCTACCCCCAGACCAAGACCTACTTCCCCCACTTCGACCTGTCCGTGTGCTGCACCCTGCCCAAAAGCTCCGTGTGGACCCCGTCAACTTCAAAGTGAGCATCTGGGAAGGGGTGACCGTCTGGCTCCCCTCTGCACACACCTCTGGCTACCCCCTCACCTCACCCCCTTGCTCACATCTCCTTTTGCCTTTCAGCTGCTGGGTCACTGCTTCCTGGTGGTCGTGGCCGTCCACTTCCCCTCTCTCCTGACCCCGGAGGTCCATGCTTCCCTGGACAAGTTCGGTGCTGTGCCGTGGGACACCGTCCTTACTGCCAAGTACCGTGTA

Reminder: Eukaryotic gene structure
GenBank format

- Originates from the GenBank database.
- Contains both a DNA sequence and annotations of features (e.g. location of genes).
LOCUS CMGLOAD 1185 bp DNA linear VRT 18-APR-2005
DEFINITION Cairina moschata (duck) gene for alpha-D globin.
ACCESSION X01831
VERSION X01831.1 GI:62724
KEYWORDS alpha-globin; globin.
SOURCE Cairina moschata (Muscovy duck)
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Archosauria; Aves; Neognathae; Anseriformes; Anatidae; Cairina.
REFERENCE 1 (bases 1 to 1185)
AUTHORS Erbil,C. and Niessing,J.
TITLE The primary structure of the duck alpha D-globin gene: an unusual 5' splice junction sequence
JOURNAL EMBO J. 2 (8), 1339-1343 (1983)
PUBMED 10872328
GenBank format - ORIGIN section

<table>
<thead>
<tr>
<th>ORIGIN</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ctgcgtggcc tcagccccctc cacccttccca cgctgataag ataaggccag ggcgggagcg</td>
</tr>
<tr>
<td>61</td>
<td>caggggtgccttaaagagctcg gccccgcggg tgtctccacc acagaaacc gtcagttgcc</td>
</tr>
<tr>
<td>121</td>
<td>agcctgccac gccgctgccg ccattgcctgac cgccgagggc aagagctca tcagctctac</td>
</tr>
<tr>
<td>181</td>
<td>tgtggagaggttgtgtgcc accagagga attcgggaagt gaagctctgc agaggtgtgcag</td>
</tr>
<tr>
<td>241</td>
<td>gctggccca ggggacttc cggccaggtg cagcctggag cggcgcagct gcagcggctt</td>
</tr>
<tr>
<td>301</td>
<td>tgggctggaga cccagagcgc cagccagtgc acggtggagt gggccagcgg ccagcgcacc</td>
</tr>
<tr>
<td>361</td>
<td>aaaactgact ggcctcgtctcc cgggagagtt ttcctcgcct cctcccagac caagacctc</td>
</tr>
<tr>
<td>421</td>
<td>tccccccactctcgacctgctca caccgctctct ggcctcgctc gaggacagtt gcgagttgag</td>
</tr>
<tr>
<td>481</td>
<td>ggccgtccccttgggaatgc cgtgaagctcg cttggcagtc gggccagcgg gcagcgcacc</td>
</tr>
<tr>
<td>541</td>
<td>ctgcatgccat cagagctgtc caccgctctct gttgcgcttg ttcctcgcct cctcccagac</td>
</tr>
<tr>
<td>601</td>
<td>gactaggggctctgggtcttg cgggcttggtt ggggagagtt ttcctcgcct cctcccagac</td>
</tr>
<tr>
<td>661</td>
<td>gctctgtgatc tctcggctc gcgctgcttg ggggagagtt ttcctcgcct cctcccagac</td>
</tr>
<tr>
<td>721</td>
<td>ggtaccagggctctggtgggg cccagagcgc cagccagtgc acggtggagt gggccagcgg</td>
</tr>
<tr>
<td>781</td>
<td>gtggccagaaggtgtgtgtgcc agaggtgtgc agaggtgtgcag</td>
</tr>
<tr>
<td>841</td>
<td>gggagaactca gggccctctcg gggagagtt ttcctcgcct cctcccagac catccctttg</td>
</tr>
<tr>
<td>901</td>
<td>tccgggagcag ggtactaag cctctgtggtt gggcaagact acagccccaga ggtgctggag</td>
</tr>
<tr>
<td>961</td>
<td>tggctgctggt ggcacactctg gggcaagact acagccccaga ggtgctggag tggaggttcc</td>
</tr>
<tr>
<td>1021</td>
<td>agttcttctgtgc ggcctgcttg gggctgcttg gggcagctga gggccagcgcactg</td>
</tr>
<tr>
<td>1081</td>
<td>ccccttgaggat tacacattac cagacagtcc tggctgcttg ggcctgcttg</td>
</tr>
<tr>
<td>1141</td>
<td>gggcatcgggg ggtcctcttg ggggtgctt gcctctttgct ggcctgcttg ggcctgcttg</td>
</tr>
</tbody>
</table>

//
GenBank format - FEATURE section

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>Location/Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>1..1185 /organism="Cairina moschata" /mol_type="genomic DNA" /db_xref="taxon:8855"</td>
</tr>
<tr>
<td>CAAT_signal</td>
<td>20..24</td>
</tr>
<tr>
<td>TATA_signal</td>
<td>69..73</td>
</tr>
<tr>
<td>precursor_RNA</td>
<td>101..1114 /note="primary transcript"</td>
</tr>
<tr>
<td>exon</td>
<td>101..234 /number=1</td>
</tr>
<tr>
<td>CDS</td>
<td>join(143..234,387..591,939..1067) /codon_start=1 /product="alpha D-globin" /protein_id="CAA25966.2" /db_xref="GI:4455876" /db_xref="GOA:P02003" /db_xref="InterPro:IPR000971" /db_xref="InterPro:IPR002338" /db_xref="InterPro:IPR002340" /db_xref="InterPro:IPR009050" /db_xref="UniProt/Swiss-Prot:P02003" /translation="MLTAEDKKLIVQWEKVAGHQEEFGSEALQMFLAYQPTKYFP HFDLHFGSEQVRGHHKVAAALGNAVSKLDNLGQALELSNLHAYNLRVDVPVNFKLLA QCQVVLAAHLGKDYSPEMHAADFKNLSAVAAVLAEKVR"</td>
</tr>
<tr>
<td>repeat_region</td>
<td>227..246 /note="direct repeat 1"</td>
</tr>
<tr>
<td>intron</td>
<td>235..386 /number=1</td>
</tr>
<tr>
<td>repeat_region</td>
<td>289..309 /note="direct repeat 1"</td>
</tr>
<tr>
<td>exon</td>
<td>387..591 /number=2</td>
</tr>
<tr>
<td>intron</td>
<td>592..939 /number=2</td>
</tr>
<tr>
<td>exon</td>
<td>940..1114 /number=3</td>
</tr>
<tr>
<td>polyA_signal</td>
<td>1095..1100</td>
</tr>
<tr>
<td>polyA_signal</td>
<td>1114</td>
</tr>
</tbody>
</table>
Where does the data come from?

Anyone registered with NCBI can submit data – this includes you!
Be careful! GenBank entries are not curated
Be careful! GenBank entries are not curated

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>2 (bases 1 to 11029)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHORS</td>
<td>Deubel,V., Malkinson,M. and Banet,C.</td>
</tr>
<tr>
<td>TITLE</td>
<td>Direct Submission</td>
</tr>
<tr>
<td>JOURNAL</td>
<td>Submitted (08-FEB-2002) CERVI, Institut Pasteur, 21 Avenue Tony Garnier, Lyon 69365, France</td>
</tr>
</tbody>
</table>

FEATURES

<table>
<thead>
<tr>
<th>Location/Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1..11029</td>
</tr>
<tr>
<td>/organism="West Nile virus"</td>
</tr>
<tr>
<td>/mol_type="genomic RNA"</td>
</tr>
<tr>
<td>/strain="IS-98 STD1"</td>
</tr>
<tr>
<td>/host="sick stork"</td>
</tr>
<tr>
<td>/db_xref="taxon:11082"</td>
</tr>
<tr>
<td>/note="isolated in Israel in 1998"</td>
</tr>
<tr>
<td>97..10398</td>
</tr>
<tr>
<td>/codon_start=1</td>
</tr>
<tr>
<td>/product="polyprotein precursor"</td>
</tr>
<tr>
<td>/protein_id="AAL87234.1"</td>
</tr>
<tr>
<td>/translation="MSKKPGPGPKSRAVNMLKRGMPRVLSLIGKLKRAMSLIDGKPSRFVLALLAFRFTAIAPTRAVALDRWRGVRNKQTMKHLLSFKKELGTLATSSAINRSSHKKSKKRRGGGTGI Anyway AVMGLIASVGA VTSNFFQGKM PMTNATDVTDVITIPTAAGKNLCIVI AMDVGYMCDDTITYECPVLSAGNDPEDI DCWCTKSAVYVRYGRC TKT KTRHSRRSSR"</td>
</tr>
</tbody>
</table>
Exercises: GenBank
Part 2: BLAST

Slides by Anders Gorm Pedersen, Rasmus Wernersson, Lars Rønn Olsen
Learning objectives

Part 2: BLAST

After this session you will:

• Know how sequence similarity searching works in broad strokes

• Know how to use BLAST for "reverse" searching GenBank using a sequence as the search input
BLAST
- Searching databases for sequences

BLAST (Basic Local Alignment Search Tool) is a tool to query a database for sequences similar to an input sequence.

Imagine you have sequenced a gene from an unknown sample, and you would like to know what it is. You can use BLAST in NCBI to compare your sequence to ALL the ~208,000,000 sequences in GenBank!

Sequence similarity searching

Example: you would like to know what the following sequence is:

X) AATGCCG

You have the following three sequences in your database:

A) CGTGTGATC
B) AATGCCG
C) GCTGTGAC
Sequence similarity searching

Example: you would like to know what the following sequence is:

X) AATGCCG

You have the following three sequences in your database:

A) CGTGATGTC
B) AATCCC
C) GCTGTGAC

X) AATGCCG
B) AATCCC

C) GCTGTGAC
Sequence similarity searching

Example: you would like to know what the following sequence is:

X) AATGCCG

You have the following three sequences in your database:

A) CGTGTGATC
B) AATCCCCG
C) GCTGTGAC

X) AATG−CCG
B) AATCCCCG
Sequence similarity searching

Example: you would like to know what the following sequence is:

X) AATGCCG

You have the following three sequences in your database:

A) AATCCCG
B) AATCCCCG
C) AATCC

X) AATGCCG X) AATG−CCG X) AATGCCG
A) AATCCCG B) AATCCCGG C) AAT−CC−

Which match is best?
Alignment score

There are different schemes for scoring alignments

A common one, is the use of penalties

For example, a mismatch can give a penalty of 1

Insertion of a gap could give a penalty of 5

Extension of a gap can give a penalty of 2

The lower the penalty, the better the alignment score

X) AATGCCG
A) AATCCCG
Penalty: 1

X) AATG–CCG
B) AATCCCCG
Penalty: 6

X) AATG---CCG
C) AATCCCCCG
Penalty: 8
BLAST flavors

BLASTN
Nucleotide query sequence
Nucleotide database

BLASTP
Protein query sequence
Protein database

BLASTX
Nucleotide query sequence
Protein database
Compares all six reading frames with the database

TBLASTN
Protein query sequence
Nucleotide database
"On the fly" six frame translation of database

TBLASTX
Nucleotide query sequence
Nucleotide database
Compares all reading frames of query with all reading frames of the database
BLASTN
- Searching GenBank for nucleotide sequences

[Image: BLASTN interface]

When is a database hit significant?

Problem:

• Even unrelated sequences can be aligned (yielding a low score)
• How do we know if a database hit is meaningful?
• When is an alignment score sufficiently high?

Solution:

• Determine the range of alignment scores you would expect to get for random reasons (i.e., when aligning unrelated sequences).
• Compare actual scores to the distribution of random scores.
• Is the real score much higher than you’d expect by chance?
Distribution of random alignment scores

Software simulation
Significance of alignment score expressed as E-value

Searching a database of *unrelated* sequences results in scores following an extreme value distribution.

The exact shape and location of the distribution depends on the exact nature of the database and the query sequence.

E-value: the number of *random hits* to expect for any given score.

Want E-values below 1 (the lower the better).
Significance of alignment score expressed as E-value

E-value / Expect-value:
Number of unrelated hits with an equal or better alignment score to expect due to strictly stochastic reasons.

Example:
Alignment score = 110
E-value = 8.7

Alignment score = 135
E-value = 0.0001
Exercises: BLAST
Part 3: UniProt

Slides by Henrik Nielsen, Lars Rønn Olsen
Part 3: UniProt

After this session you will:

- Have an overview of the content of the UniProt database
- Know the difference between the UniProt/Swiss-Prot and UniProt/TrEMBL databases
- Know how to search for sequences and sequence information using basic and advanced keyword search
Protein databases, historical background

- **Swiss-Prot**, http://www.expasy.org/sprot/
 - Established in 1986 in Switzerland
 - ExPASy (Expert Protein Analysis System)
 - Swiss Institute of Bioinformatics (SIB) and European Bioinformatics Institute (EBI)

- **PIR**, http://pir.georgetown.edu/
 - Established in 1984
 - National Biomedical Research Foundation, Georgetown University, USA

- *In 2002 merged into:*
- **UniProt**, http://www.uniprot.org/
 - A collaboration between SIB, EBI and Georgetown University.
UniProt

- UniProt Knowledgebase (UniProtKB)
- UniProt Reference Clusters (UniRef)
- UniProt Archive (UniParc)

- UniProt Knowledgebase Release 2018_07 (18-July-18) consists of:
 - UniProtKB/Swiss-Prot: Annotated manually *(curated)*
 - 557,992 entries
 - UniProtKB/TrEMBL: Computer annotated
 - 120,243,849 entries
Levels of curation

GenBank / EMBL / DDBJ:
• Entries created & maintained by individual contributors
• No check for redundancy

Swiss-Prot:
• Entries created & maintained by staff
• Better standards compliance

TrEMBL:
• Entries created by automatic translation of EMBL sequences & annotations
Growth of UniProt

TrEMBL

Swiss-Prot
Content of UniProt Knowledgebase

• **Amino acid sequences**

• Functional and structural annotations
 - Function / activity
 - Secondary structure
 - Subcellular location
 - Mutations, phenotypes
 - Post-translational modifications

• Origin
 - organism: Species, subspecies; classification
 - tissue

• References

• Cross references
Amino acid sequences

From where do you get amino acid sequences?

• Translation of nucleotide sequences (GenBank/EMBL/DDBJ)
• Direct amino acid sequencing: Edman degradation
• Mass spectrometry
• 3D-structures
Content of UniProt Knowledgebase

• Amino acid sequences
• Functional and structural annotations
 - Function / activity
 - Secondary structure
 - Subcellular location
 - Mutations, phenotypes
 - Post-translational modifications
• Origin
 - organism: Species, subspecies; classification
 - tissue
• References
• Cross references
Protein structure

Primary structure: Amino acid sequence

Secondary structure:
"Backbone" hydrogen bonding
Alpha helix / Beta sheet / Turn

Tertiary structure: Fold, 3D coordinates

Quaternary structure: subunits
Content of UniProt Knowledgebase

• Amino acid sequences
• Functional and structural annotations
 - Function / activity
 - Secondary structure
 - **Subcellular location**
 - Mutations, phenotypes
 - Post-translational modifications
• Origin
 - organism: Species, subspecies; classification
 - tissue
• References
• Cross references
Subcellular location / protein sorting

Various proteins belong to different *compartments* of the cell – some even belong *outside* the cell.
Content of UniProt Knowledgebase

- Amino acid sequences
- Functional and structural annotations
 - Function / activity
 - Secondary structure
 - Subcellular location
 - Mutations, phenotypes
 - Post-translational modifications
- Origin
 - organism: Species, subspecies; classification
 - tissue
- References
- Cross references
Many proteins are modified after they have been synthesized in order to become functional.

Proteolysis: Cleavage of *signal peptides, propeptides or initiator methionine.*

Glycosylation: Especially common on the *cell surface.* Plays a role in sorting of proteins to *lysosomes.*

Phosphorylation: Often *reversible.* Regulates the *activity* of many enzymes.
Inhibitor of serum proteases. Its primary target is elastase, but it also has a moderate affinity for plasmin and thrombin. Irreversibly inhibits trypsin, chymotrypsin and plasminogen activator. The aberrant form inhibits insulin-induced NO synthesis in platelets, decreases coagulation time and has proteolytic activity against insulin and plasmin.

Short peptide from AAT: reversible chymotrypsin inhibitor. It also inhibits elastase, but not trypsin. Its major physiological function is the protection of the lower respiratory tract against proteolytic destruction by human leukocyte elastase (HLE).

Sites

<table>
<thead>
<tr>
<th>Feature key</th>
<th>Position(s)</th>
<th>Length</th>
<th>Description</th>
<th>Graphical view</th>
<th>Feature identifier</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site^1</td>
<td>382-383</td>
<td>2</td>
<td>Reactive bond</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GO - Molecular function^1

- Glycoprotein binding # Source: Uniprot
- Protease binding # Source: Uniprot

GO - Biological process^1

- Acute phase response # Source: Uniprot
- Negative regulation of endopeptidase activity # Source: GO_Central
- Platelet degranulation # Source: Reactome

Complete GO annotation...

Keywords - Molecular function^1

Protease inhibitor, Serine protease inhibitor

Keywords - Biological process^1

Acute phase, Blood coagulation, Hemostasis
UniProt entry, formatted view

Entry name (ID)

Accession #
Entry names and accession numbers

• Entry name (UniProt ID / GenBank LOCUS)
 • Provides a mnemonic identifier for a database entry. One and only one name per entry.

• Accession #
 • Provides a stable identifier for a database entry (does not change across database versions). One or more accession numbers per entry.
Entry information

Entry name
A1AT_HUMAN

Accession
Primary (citable) accession number: **P01009**
Secondary accession number(s): A6PX14, B2RDQ8, Q0PVP5, Q13672, Q53XM8, Q5U0M1, Q7M4R2, Q86U18, Q86U19, Q96BF9, Q96ES1, Q9P1P0, Q9UCE6, Q9UCM3

Entry history
- Integrated into UniProtKB/Swiss-Prot: July 21, 1986
- Last sequence update: October 1, 1996
- Last modified: February 4, 2015

This is version 213 of the entry and version 3 of the sequence. [Complete history]

Entry status
Reviewed (UniProtKB/Swiss-Prot)

Annotation program
Chordata Protein Annotation Program

Disclaimer
Any medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.
Inhibitor of serine proteases. Its primary target is elastase, but it also has a moderate affinity for plasmin and thrombin. Irreversibly inhibits trypsin, chymotrypsin and plasminogen activator. The aberrant form inhibits insulin-induced NO synthesis in platelets, decreases coagulation time and has proteolytic activity against insulin and plasmin.

Short peptide from AAT: reversible chymotrypsin inhibitor. It also inhibits elastase, but not trypsin. Its major physiological function is the protection of the lower respiratory tract against proteolytic destruction by human leukocyte elastase (HLE).
Names & Taxonomy

Protein names	**Recommended name:** Alpha-1-antitrypsin
Alternative name(s):	• Alpha-1 protease inhibitor
	• Alpha-1-antiproteinase
	• Serpin A1
Cleaved into the following chain:	• Short peptide from AAT
	• Short name: SPAAAT
Gene names	Name: SERPINA1
	Synonyms: AAT, P1
	ORF Names: PRO0684, PRO2209
Organism	Homo sapiens (Human)
Taxonomic identifier	9606 [NCBI]
Taxonomic lineage	Eukaryota > Metazoa > Chordata > Craniata > Vertebrata > Euteleostomi > Mammalia > Eutheria > Euarchontoglires > Primates > Haplorrhini > Catarhini > Hominidae > Homo }
Gene Ontology (GO)

GO - Molecular function:
- glycoprotein binding [Source: UniProtKB]
- identical protein binding [Source: IntAct]
- protease binding [Source: UniProtKB]
- serine-type endopeptidase inhibitor activity [Source: UniProtKB]

GO - Biological process:
- acute-phase response [Source: UniProtKB-KW]
- blood coagulation [Source: Reactome]
- negative regulation of endopeptidase activity [Source: GO_Central]
- platelet activation [Source: Reactome]
- platelet degranulation [Source: Reactome]
- regulation of proteolysis [Source: GO_Central]
<table>
<thead>
<tr>
<th>Feature key</th>
<th>Position(s)</th>
<th>Length</th>
<th>Description</th>
<th>Graphical view</th>
<th>Feature identifier</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn(^1)</td>
<td>48 - 50</td>
<td>3</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Helix(^1)</td>
<td>51 - 68</td>
<td>18</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Beta strand(^1)</td>
<td>70 - 72</td>
<td>3</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Beta strand(^1)</td>
<td>74 - 76</td>
<td>3</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Helix(^1)</td>
<td>78 - 89</td>
<td>12</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Helix(^1)</td>
<td>94 - 103</td>
<td>10</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Turn(^1)</td>
<td>108 - 110</td>
<td>3</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Helix(^1)</td>
<td>113 - 127</td>
<td>15</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Beta strand(^1)</td>
<td>135 - 145</td>
<td>11</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Helix(^1)</td>
<td>152 - 162</td>
<td>11</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Beta strand(^1)</td>
<td>164 - 169</td>
<td>6</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Helix(^1)</td>
<td>174 - 188</td>
<td>15</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Turn(^1)</td>
<td>189 - 191</td>
<td>3</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Beta strand(^1)</td>
<td>206 - 220</td>
<td>15</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Helix(^1)</td>
<td>224 - 226</td>
<td>3</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Beta strand(^1)</td>
<td>228 - 235</td>
<td>8</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
<tr>
<td>Beta strand(^1)</td>
<td>238 - 256</td>
<td>19</td>
<td>Combined sources</td>
<td>Graphical view</td>
<td>Identifier</td>
<td>Actions</td>
</tr>
</tbody>
</table>
Evidence (Comments, Feature Table)

Experimental:

<table>
<thead>
<tr>
<th>Feature key</th>
<th>Position(s)</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
</table>
| Signal peptide | 1 – 24 | 24 | Manual assertion based on experiment in [1]

"Characterization of a 54 kDa, alpha 1-antitrypsin-like protein isolated from ascitic fluid of an endometrial cancer patient."

Tanaka N., Sekiya S., Takamizawa H., Kato N., Moriyama Y., Fujimura S.

Jpn. J. Cancer Res. 82:693-700(1991) [PubMed] [Europe PMC] [Abstract]

Cited for: PROTEIN SEQUENCE OF 25-39, FUNCTION.

Predicted:

<table>
<thead>
<tr>
<th>Feature key</th>
<th>Position(s)</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal peptide</td>
<td>1 – 30</td>
<td>30</td>
<td>Sequence Analysis</td>
</tr>
</tbody>
</table>

By similarity:

<table>
<thead>
<tr>
<th>Feature key</th>
<th>Position(s)</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disulfide bond</td>
<td>41 ↔ 77</td>
<td></td>
<td>By similarity</td>
</tr>
</tbody>
</table>
Evidence types in UniProt

See also http://www.uniprot.org/help/evidences
UniProt entry, sequence(s)
Cross-references, nucleotide sequences

<table>
<thead>
<tr>
<th>Select the link destinations:</th>
<th>K01396 mRNA. Translation: AAB59375.1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMBL</td>
<td>Genomic DNA. Translation: AAB59495.1.</td>
</tr>
<tr>
<td>GenBank</td>
<td>X01683 mRNA. Translation: CAA25838.1.</td>
</tr>
<tr>
<td>DDBJ</td>
<td>M11465 mRNA. Translation: AAA51546.1.</td>
</tr>
<tr>
<td></td>
<td>J02619 Genomic DNA. Translation: AAA51547.1.</td>
</tr>
<tr>
<td></td>
<td>DQ682455 mRNA. Translation: ABG73380.1.</td>
</tr>
<tr>
<td></td>
<td>AM048838 Genomic DNA. Translation: CAJ15161.1.</td>
</tr>
<tr>
<td></td>
<td>AF113676 mRNA. Translation: AAF29581.1.</td>
</tr>
<tr>
<td></td>
<td>AF130068 mRNA. Translation: AAG35496.1.</td>
</tr>
<tr>
<td></td>
<td>BX161449 mRNA. Translation: CAD61914.1.</td>
</tr>
<tr>
<td></td>
<td>BX247968 mRNA. Translation: CAD62306.1.</td>
</tr>
<tr>
<td></td>
<td>BX248002 mRNA. Translation: CAD62334.1. Different initiation.</td>
</tr>
<tr>
<td></td>
<td>BX248257 mRNA. Translation: CAD62585.1. Different initiation.</td>
</tr>
<tr>
<td></td>
<td>AK315637 mRNA. Translation: BAG38005.1.</td>
</tr>
</tbody>
</table>

[Image of nucleotide sequence with arrow annotation]
Exercises: UniProt