Introduction

Welcome to the exercise that accompanies lecture Microbiome association analysis. Throughout the exercises we will use different statistical tests to give you an idea of the basic tools and commands for data analysis in R that might come useful during your project work.

You will be working with microbiome data from Nielsen et al, 2014 that was published in Nature Biotechnology by our group (10.1038/nbt.2939). The dataset consists of:

- metadata - describes study participants
- speciec_matrix - summarizes microbial abundance in every study participant; it includes MGS’es (species; at least 700 genes) and CAG’s (small genetic units; less than 700 genes)
- mgs_cag_geneCount - vector that summarizes number of genes in MGS’es and CAG’s

The study included Spanish people - some with inflammatory bowel disease (IBD) - Crohn's disease (CD) or ulcerative colitis (UC), and Danish people - some with obesity. The paper itself did not focus on the human phenotype but you will analyze it also in that context.

You will notice that for plotting I am often using ggplot() command. I encourage you to make yourself familiar with it if you ever plan to do a lot of plotting in R. To give you a head start I made a small primer exercise where I explain ggplot syntax.

The exercises should be run on padawan using R-3.1.2 The data can be accessed from: /home/local1/27636/Ex_association/association_metagenomics.RData

ggplot primer

In ggplot a data frame is essential. We start by creating example_df that contains columns (variables) describing height, weight and sex information for four individuals. With that we are ready to use ggplot.

In the ggplot() command you start by specifying the data frame with input data and aes(). In aes() you define which column from the data frame should be used as x and y variable. Additionally, in aes() you can specify which column should be used for coloring points, lines or bars in the plots you create.

Now, to plot a scatterplot apart from defining ggplot() you need to add ‘+ geom_point()’. To make a barplot you need to add ‘+ geom_bar()’. Try following examples:

```r
library(ggplot2)  # plotting package
top <- data.frame( Name=c("S1", "S2", "S3", "S4"), Height=c(183, 178, 159, 192), Weight=c(78, 65, 70, 84), Sex=c("M", "M", "F", "F"))

top # print the table to the terminal
```
Data - loading and inspection

library(ggplot2) # plotting package
library(plyr) # data analysis package
library(reshape2) # data re-shaping package
load("association_metagenomics.RData") # input data

check what kind of variables were loaded
ls()

[1] "example_df" "metadata" "mgs_cag_geneCount"
[4] "speciec_matrix"

Using ls() command you listed all objects present in your R environment. See how they look like by printing them to screen or running str() / length() command. Inspect metadata, speciec_matrix and mgs_cag_geneCount.

Q1: How many individuals are included in the dataset? How many MGS’es/CAG’s altogether?

Metadata - categorical variables

The metadata consists of 393 rows, each row describing nationality, gender, age, BMI, health status and MGSrichness (number of gut microorganisms) of a study participant. The column Health_Status has been made with IBD patients in mind, that’s why it only contains information about Spanish individuals. If you print it together with the Nationality column, you will see that the Danish individuals have NAs.

head(metadata[,c("Nationality","Health_Status")]) # print the top of the data frame
Let's change the NAs in Danish individuals Healthy. We will do it by subsetting the elements in that column that are NAs with 'Healthy'. Notice that we identify NA by using command is.na() that returns TRUE/FALSE. To see how is.na() works, try printing `is.na(metadata$Health_Status)` before and after executing following commands:

```r
metadata$Health_Status[ is.na(metadata$Health_Status) ] <- "Healthy" # print the top of the data frame
```

Command `table()` is useful when counting occurrence of each element in a vector. You noticed that column `Health_Status` has some additional categories representing healthy individuals, i.e. 'HEALTHY' and 'HEALTHYREL'. We need to remove this inconsistency by changing them to 'Healthy'.

```r
metadata$Health_Status[ grep( "H", metadata$Health_Status ) ] <- "Healthy"
```

Q2: In the commands above we used function `grep`. Explain what it does - you can inspire yourself by looking at R help (?grep).

Q3: How many UC, CD, healthy individuals are in the dataset? Is this a balanced design?
Q4: How would you plot barplots with sample counts for column Gender and Nationality.

Q5: How many Danes and Spaniards took part in the study? How many males and females?

Let’s take a look at the plotting alternative with ggplot. To that we need to modify the data frame a bit. We will use melt() function from package reshape2 and ddply from package plyr. In the code I included links to the websites where the mechanism of melt and ddply is explained.

```r
sub_metadata <- metadata[,c("BaseID","Nationality","Gender","Health_Status")]
sub_metadata <- melt(sub_metadata, id.vars="BaseID") # transforms the data from wide to long format; see http://seananderson.ca/2013/10/19/reshape.html
sub_metadata_summary <- ddply(sub_metadata, c("variable","value"), summarise, count_elements=length(value)) # summarizes data frame by calculating specified values; see http://seananderson.ca/2013/12/01/plyr.html
ggplot(sub_metadata_summary, aes(x=value, y=count_elements)) + geom_bar(stat="identity") + ylab("Number of samples") + facet_grid(. ~ variable, scales="free_x")
```
Metadata - continuous variables

Let's have a look at the continuous variables - age, BMI and MGSrichness. By plotting their histograms we can investigate their distributions.

```r
par(mfrow=c(2,2))
hist(metadata$age)
hist(metadata$BMI)
hist(metadata$MGSrichness)
```
As you remember, we are dealing with individuals from two countries - Denmark and Spain. Re-plot the histograms including information about the ‘Nationality’. You can do that in ggplot. In aes() you need only to specify ‘x’ and ‘fill’: aes(x=age, fill=Nationality). To plot histogram you need to use ‘+ geom_histogram(position="identity", alpha=0.5)’.

Q6: Inspect distribution of the continuous variables, colored/plotted according to nationality. Which one looks Gaussian/normal like?

Q7: In your opinion, is the BMI distribution among Danes representative for the population? What can be a purpose of a design like that?

Microbiome data

The microbiome data in speciec_matrix is a matrix containing abundance information for each MGS (species) and CAG (small genetic unit) across all samples. As you remember from earlier lectures, MGS’es contain at least 700 genes. Can you count how many MGS’es and CAG’s are in the dataset? You can do that either by using R object mgs_cag_geneCount or by checking the rownames in speciec_matrix using function grep().

Q8: How many MGS’es did you count? How many CAG’s?

Let’s plot the size distribution of MGS’es and CAG’s. We will do it again using ggplot and for that we first need to create a data frame.
mgs_cag_geneCount_df <- data.frame(geneCount=mgs_cag_geneCount, ID=names(mgs_cag_geneCount), stringsAsFactors=F)
mgs_cag_geneCount_df$Species <- ifelse(grepl("M", mgs_cag_geneCount_df$ID), "Yes", "No")
head(mgs_cag_geneCount_df)

<table>
<thead>
<tr>
<th>geneCount</th>
<th>ID</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>2915</td>
<td>MGS:1</td>
<td>Yes</td>
</tr>
<tr>
<td>2608</td>
<td>MGS:2</td>
<td>Yes</td>
</tr>
<tr>
<td>2450</td>
<td>MGS:3</td>
<td>Yes</td>
</tr>
<tr>
<td>3523</td>
<td>MGS:4</td>
<td>Yes</td>
</tr>
<tr>
<td>2981</td>
<td>MGS:5</td>
<td>Yes</td>
</tr>
<tr>
<td>2271</td>
<td>MGS:6</td>
<td>Yes</td>
</tr>
</tbody>
</table>

tail(mgs_cag_geneCount_df)

<table>
<thead>
<tr>
<th>geneCount</th>
<th>ID</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>CAG:7376</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>CAG:7377</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>CAG:7378</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>CAG:7379</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>CAG:7380</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>CAG:7381</td>
<td>No</td>
</tr>
</tbody>
</table>

ggplot(mgs_cag_geneCount_df, aes(x=geneCount, fill=Species)) + geom_histogram() + facet_grid(Species ~ . , scales="free_y") + scale_x_continuous(trans = "log2") + xlab("geneCount (log2)"

stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
In the commands above we used function grepl() that is similar to grep(), but produces TRUE/FALSE as well as function ifelse(). Check in R help how ifelse works by typing ?ifelse.

Microbiome association analysis

Association A - species richness vs age

Species richness is estimated as the number of MGS’es detected in an individual. The object metadata contains column ‘MGSrichness’ with that estimate. How would you calculate it if you didn’t have that information? You can use speciec_matrix for that purpose.

```r
species_richness <- colSums(speciec_matrix[mgs_cag_geneCount>=700,] > 0)
```

Q9: Explain what happens in that command? Does the output agrees with the metadata column ‘MGSrichness’?

Let’s look at the association between age and richness. Usually you would try to visualize data to see if there is any signal. In this case both variables are continuous so you can use a scatterplot for the purpose.

```r
plot(metadata$MGSrichness, metadata$age, pch=16, xlab="Species richness", ylab="Age")
```
Q10: Comment on the richness to age relationship.

Let's calculate a correlation coefficient for relationship between richness and age. This is done using cor() command.

```
cor(metadata$MGSrichness, metadata$age) # returns correlation coefficient
```

```
## [1] NA
```

```
cor(metadata$MGSrichness, metadata$age, use="complete.obs") # returns correlation coefficient
```

```
## [1] 0.2362206
```

```
cor.test(metadata$MGSrichness, metadata$age, use="complete.obs") # returns correlation coefficient and pvalue
```
Q11: Why did the first cor() command produce NA but not the second one? Look at R help page for cor() (\texttt{?cor}). Can you identify what and where went wrong?

Q12: How strong is the association between richness and age? Report correlation coefficient and p-value. Can you comment it in relation to paper dx.doi.org/10.1038/nature11053 by Yatsunenko et al, 2012 (especially Figure 2)?

Try plotting the same relationship in ggplot. You can visualize the age to richness trend by adding a regression line to a plot:

```r
ggplot(metadata, aes(x=MGSrichness, y=age)) + geom_point() + xlab("Species richness") + ylab("Age") + geom_smooth(method=lm, se=FALSE)
```

Association B - species richness vs nationality

We will now look at the relationship between richness and nationality. Nationality is a discrete variable, that’s why for visualization we will use a boxplot.

```r
boxplot( metadata$MGSrichness ~ metadata$Nationality, ylab="Richness")
```
The plot suggests that there is a difference between the two groups in species richness. We can test it using t-test or one-way anova. Let's try the latter. One-way anova tests if there is a significant difference between the means of two or more groups. It is usually followed by a post-hoc test to identify exactly which of the two or more groups is significantly different. We will compute anova model using command `aov()`. As a post-hoc test we will use Tukey’s procedure that is implemented in command `TukeyHSD()`.

Q13: Why would it make sense to use t-test instead of one-way anova in this case?

```r
richness_gender_nationality <- aov( metadata$MGSrichness ~ metadata$Nationality )
summary(richness_gender_nationality)
```

```
##                            Df Sum Sq Mean Sq F value    Pr(>F)
## metadata$Nationality   1     25235  25235  11.730 0.000681 ***
## Residuals               391  841263   2152          
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
TukeyHSD(richness_gender_nationality)
```
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = metadata$MGSrichness ~ metadata$Nationality)

```
diff  lwr       upr     p adj
ES-DK -16.10578 -25.3518 -6.859755 0.0006807
```

You can run t-test using t.test() command. Compare the result with one-way anova.

Association C - species richness vs disease

As the inflammatory bowel disease, especially Crohn’s disease (CD), is associated with microbial dysbiosis we will look at the association of that phenotype and richness. First the visual inspection of the data:

```
boxplot( metadata$MGSrichness ~ metadata$Health_Status, ylab="Richness")
```

Q15: Considering this plot and previous association between the richness and nationality, do you think that Spanish people on average have a lower species richness? How could you test it?
Let's make the statistical test to see if the difference between CD, UC and Healthy is significant. Again, we will use one-way anova and a post-hoc test using Tukey's procedure.

```r
richness_disease_nationality <- aov( metadata$MGSrichness ~ metadata$Health_Status )
summary(richness_disease_nationality)
```

```
#>            Df Sum Sq Mean Sq F value Pr(>F)
#> metadata$Health_Status  2 172040   86020   48.31 <2e-16 ***
#> Residuals              390 694458    1781
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```r
TukeyHSD(richness_disease_nationality)
```

```
#> Tukey multiple comparisons of means
#> 95% family-wise confidence level
#> Fit: aov(formula = metadata$MGSrichness ~ metadata$Health_Status)
#> $`metadata$Health_Status`
#> diff   lwr    upr  p adj
#> Healthy-CD  92.97158  70.40857 115.534598 0.0000000
#> UC-CD       78.27803  54.85085 101.705213 0.0000000
#> UC-Healthy -14.69355 -25.61276  -3.774337 0.0047388
```

Q16: Comment on the results. How significant is the difference between CD and Healthy or UC and Healthy?

Association D - Crohn’s disease vs MGS abundnace

As we learned that Crohn’s disease is associated with changes in the gut microbiome, let's see which microbial species (MGS) changes their abundance compared to the healthy individuals.

We will only look at the CD and Healthy part of the study, so we need to create a corresponding index vector. Let’s visualize MGS:6 (*Bacteroides vulgatus*) - it's abundance in Healthy and CD patients as well it's relation to richness.

```r
i_CD_Healthy <- metadata$Health_Status %in% "CD" | metadata$Health_Status %in% "Healthy"
metadata$Health_Status <- relevel(factor(metadata$Health_Status),"Healthy")
mgs6_df <- data.frame( mgs=speciec_matrix["MGS:6",i_CD_Healthy], health_status=metadata$Health_Status[i_CD_Healthy], richness=metadata$MGSrichness[i_CD_Healthy] )
ggplot(mgs6_df, aes(x=health_status,y=mgs6)) + geom_boxplot() + geom_jitter(position=position_jitter(width=.1, height=0))
```
ggplot(mgs6_df, aes(x=richness, y=mgs6, color=health_status)) + geom_point()
Q17: Comment on the plots - consider MGS:6 abundance to richness relationship.

Abundance of MGS:6 is to some extent correlated to richness; we know that richness is also associated with the Crohn's disease. When testing species abundance to disease status in the linear model we will add a term for richness. The linear model is called using command `lm()`. By including richness term in the model we can account for its effect and get a more reliable estimate of relationship between Crohn's disease and species abundance.

```
summary(lm(specie_matrix[,"MGS:6",i_CD_Healthy] ~ metadata$Health_Status[i_CD_Healthy] ))
```
```r
summary(lm(speciec_matrix["MGS:6", i_CD_Healthy] ~ metadata$Health_Status[i_CD_Healthy] + metadata$MGSrichness[i_CD_Healthy])) # richness term included
```

```
## Call:  
## lm(formula = speciec_matrix["MGS:6", i_CD_Healthy] ~ metadata$Health_Status[i_CD_Healthy] + metadata$MGSrichness[i_CD_Healthy])
## 
## Residuals: 
##     Min      1Q  Median      3Q     Max
## -550.23  -92.43  -28.57   75.20  634.70
## 
## Coefficients: 
##                  Estimate Std. Error t value
## (Intercept)      512.3367    37.6120  13.622
## metadata$Health_Status[i_CD_Healthy]CD 114.9447    39.9958   2.874
## metadata$MGSrichness[i_CD_Healthy]    -2.0300     0.2215  -9.165
## 
## Pr(>|t|) 
## (Intercept)                       < 2e-16 ***
## metadata$Health_Status[i_CD_Healthy]CD  0.00438 **
## metadata$MGSrichness[i_CD_Healthy]       < 2e-16 ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Residual standard error: 150.9 on 266 degrees of freedom
## Multiple R-squared:  0.3791, Adjusted R-squared:  0.3745 
## F-statistic: 81.22 on 2 and 266 DF,  p-value: < 2.2e-16 
```
Q18: Comment the difference in significance of CD status to abundance association without and with accounting for richness.

Let's run the linear model across all MGS'es. We will do it using a for-loop and we will save pvalues in a data frame. For reporting significantly associated MGS'es we will only use the pvalues calculated using linear model that accounts for richness. Finally, we will correct the pvalues for multiple testing using Benjamini & Hochberg method implemented in p.adjust().

```r
mgs_names <- names(mgs_cag_geneCount[ mgs_cag_geneCount > 700 ]) # get species names
stat_out_lm_df <- data.frame() # data frame to store results
for( i in mgs_names){ # we are looping through MGS names
    stat_out_abundance <- summary(lm(speciec_matrix[i,i_CD_Healthy] ~ metadata$Health_Status[i_CD_Healthy] ))
    stat_out_abundance_richness <- summary(lm(speciec_matrix[i,i_CD_Healthy] ~ metadata$Health_Status[i_CD_Healthy] + metadata$MGSrichness[i_CD_Healthy] )) # richness term included
    # with stat_out_abundance$coefficients[2,4] we access the p.value estimate - that's the output we are interested in:
    stat_out_lm_df <- rbind(stat_out_lm_df, c(stat_out_abundance$coefficients[2,4] , stat_out_abundance_richness$coefficients[2,4])))
    # uncomment to monitor progress
    #cat(i,"
"") # prints a name of MGS - allows to monitor progress of the calculation
}
rownames(stat_out_lm_df) <- mgs_names
colnames(stat_out_lm_df) <- c("Pvalue_CD", "Pvalue_CD_Richness")
# remove MGS with missing estimates - occurs for MGS'es not detected in any sample
stat_out_lm_df <- stat_out_lm_df[!is.nan(stat_out_lm_df[,1]),]
# Order according to pvalue
stat_out_lm_df <- stat_out_lm_df[order(stat_out_lm_df$Pvalue_CD_Richness),]
# add FDR value - multiple testing correction
stat_out_lm_df$Pvalue_CD_Richness_BH <- p.adjust( stat_out_lm_df$Pvalue_CD_Richness, method="BH" )
sig_mgs_lm <- rownames(stat_out_lm_df)[stat_out_lm_df$Pvalue_CD_Richness_BH < 0.05 ]
```

Q19: How many MGS'es have their abundance significantly associated with Crohn's disease? What's the difference before and after correcting for multiple testing?

Bonus: association - richness vs disease

You might have been wondering why we didn’t test richness association with overweight or obese phenotype. To do that we need to supplement ‘Health_Status’ variable with ‘Overweight’ and ‘Obese’ categories. We do that based on BMI scores; BMI 25-30 is classified as overweight and BMI>30 as obese. Notice that we create a new column in metadata called ‘Health_Extended’.
metadata$Health_Extended <- as.character(metadata$Health_Status)
metadata$Health_Extended[metadata$BMI > 25] <- "Overweight"
metadata$Health_Extended[metadata$BMI > 30] <- "Obese"

boxplot(metadata$MGSrichness ~ metadata$Health_Extended, ylab="Richness")

richness_disease_extended <- aov(metadata$MGSrichness ~ metadata$Health_Extended)
summary(richness_disease_extended)

Df Sum Sq Mean Sq F value Pr(>F)
metadata$Health_Extended 4 140202 35050 18.73 4.36e-14 ***
Residuals 388 726296 1872

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

tukeyHSD(richness_disease_extended)
Tukey multiple comparisons of means

Fit: `aov(formula = metadata$MGSrichness ~ metadata$Health_Extended)`

- **Healthy-CD**: 92.8600427, diff=62.58941, lwr=123.130672, upr=0.0000000
- **Obese-CD**: 81.6044852, diff=51.43646, lwr=111.772506, upr=0.0000000
- **Overweight-CD**: 82.5277778, diff=51.28043, lwr=113.775129, upr=0.0000000
- **UC-CD**: 70.6000000, diff=39.98397, lwr=101.216027, upr=0.0000000
- **Obese-Healthy**: -11.2555575, diff=-27.50934, lwr=4.998221, upr=0.3201695
- **Overweight-Healthy**: -10.3322650, diff=-28.51118, lwr=7.846646, upr=0.5255751
- **UC-Healthy**: -22.2600427, diff=-39.33098, lwr=-5.189104, upr=0.0036173
- **Overweight-Obese**: 0.9232926, diff=-17.08424, lwr=18.930827, upr=0.9999120
- **UC-Obese**: -11.0044852, diff=-27.89281, lwr=5.883836, upr=0.3833173
- **UC-Overweight**: -11.9277778, diff=-30.67619, lwr=6.820633, upr=0.4084718

Q: Is the difference between Obese and Healthy significant? What about Overweight and Healthy?

Bonus: Association - Crohn’s disease vs MGS abundance - non-parametric test

As mentioned during the lecture, you can also use non-parametric tests for estimating associations between species abundance and other parameters. Here is an example of the Crohn’s disease to MGS abundance analysis using Wilcoxon test (Mann-Whitney). We will perform it only on species that are observed in at least 10 Crohn’s disease individuals.

```r

speciesCD <- rowSums(speciec_matrix[ mgs_cag_geneCount > 700 , metadata$Health_Status == "CD"] > 0)
speciesCD <- names(speciesCD)[ speciesCD >= 10 ]

non_parametric_CD <- c()
for(i in speciesCD){
  test_out <- wilcox.test(speciec_matrix[i,i_CD_Healthy] ~ metadata$Health_Stats[i_CD_Healthy])
  non_parametric_CD <- c(non_parametric_CD, test_out$p.value)
}

stat_out_wilcox_df <- data.frame( MGS=speciesCD, pvalue=non_parametric_CD, pvalue_BH=p.adjust(non_parametric_CD, method="BH"), stringsAsFactors=F)
stat_out_wilcox_df <- stat_out_wilcox_df[order(stat_out_wilcox_df$pvalue_BH),]

# How many species were significant in both tests?
sig_mgs_wilcox <- stat_out_wilcox_df$MGS[ stat_out_wilcox_df$pvalue_BH < 0.05 ]
sig_mgs_wilcox[ sig_mgs_wilcox %in% sig_mgs_lm ]

```

```text
[8] "MGS:59"   "MGS:64"   "MGS:5"   "MGS:280"  "MGS:9"   "MGS:36"   "MGS:58"
[15] "MGS:25"   "MGS:120"
```
Q: How many significant species overlap between the results generated using wilcox test and linear model? What is the difference between the two models?

Alternatively one can use a parametric model that is based on a **negative binomial distribution**. Implementation of that model is available in packages **DESeq2** or **edgeR**.

THE END