Loop modeling
and protein refinement
Agenda

- Motivations

- Loop modeling
 - modeller
 - Fread
 - KIC
 - Sphinx

- Protein refinement
 - energy minimisation
Chothia and Lesk plot

Sequence vs Structure conservation

Fig. 2. The relation of residue identity and the r.m.s. deviation of the backbone atoms of the common cores of 32 pairs of homologous proteins (see Table II).
Chothia and Lesk plot

Sequence vs Structure conservation

It is still valid

Fig. 2. The relation of residue identity and the r.m.s. deviation of the backbone atoms of the common cores of 32 pairs of homologous proteins (see Table II).
Chothia and Lesk plot

Sequence vs Structure conservation

It is still valid

Not for loops!!!

Fig. 2. The relation of residue identity and the r.m.s. deviation of the backbone atoms of the common cores of 32 pairs of homologous proteins (see Table II).
Immunoglobulin CDRs

Antibody specificity is determined by 6 loops (CDRs)

Billions of different ligands

Ab-specific rules for bb conformation
Enzymes

Rosetta

Enzyme function and regulation

Alteration of enzyme specificity by computational loop remodeling and design

Paul M. Murphya,b,c, Jill M. Bolducd, Jasmine L. Gallahera, Barry L. Stoddardd, and David Bakera,n,1
Docking

Clashes and bad geometries must be fixed before docking!
Modeller

protocols for loop building and refinement

Basic idea:
generate hundreds of loops
pick one based on energy AND cluster size

Neither fast nor accurate
Fread

Loop database

Sequence and anchor point similarity

http://opig.stats.ox.ac.uk/webapps/fread/php/
Fread

Loop database

Sequence and anchor point similarity
Fread

Outperforms modeller
Fread

Outperforms modeller

Anchor RMSD is important
Fread

Outperforms modeller

Anchor RMSD is important

Identity has small influence
Fread

Outperforms modeller

Anchor RMSD is important

Identity has small influence

no template or anchor RMSD too high?
KIC

Kinematic Closure

De Novo

Inspired from Robotics
KIC

Kinematic Closure

De Novo

Inspired from Robotics
From robotics: Analytical solution of loop closure for 6 degrees of freedom

Challenge:

- find **analytical formulation** to extract
- **all possible** backbone structures of a chain segment, that are
- **geometrically consistent** with preceding and following parts of the given structure.
Solutions
aligned to each other
aligned to constant part
• Analytical solution of loop closure for 6 degrees of freedom
• Extension: analytical determination of all mechanically accessible conformations for 6 torsions of a peptide chain of any length (e.g. 25 residues)

(1) Randomly perturb non-pivot positions
(2) Apply KC to pivot positions
KIC in Rosetta

- **Embedded into MCM protocol** (low-res + high-res)
 - 720 steps
 - Repeat 1000 times
KIC accuracy

- Improves median modeling quality from 2.0Å to 0.8Å RMSD (on set of 25 loops)
Protein refinement

Use for MD, docking

Improve appearance

Check for non-trivial clashes

Overall accuracy not affected
Protein refinement

Use for MD, docking

Improve appearance

Check for non-trivial clashes

Overall accuracy not affected

Like makeup, it's there but should look natural
refinement example
refinement example
refinement results in CASP

"distributions skewed to the left, indicating there are more big failures than big improvements."

Evaluation of predictions in the CASP10 model refinement category

Timothy Nugent, Domenico Cozzetto, and David T. Jones*
Resources for Loop Modeling

Libraries
Swiss PDB viewer / Swiss modeller (http://spdbv.vital-it.ch/)
Fread (http://opig.stats.ox.ac.uk/webapps/fread/php/)
Brix (http://brix.crg.es/)

Ab Initio
Rosetta (https://www.rosettacommons.org)
Modeller (https://salilab.org/modeller/)
Resources for refining

Swiss PDB viewer / Swiss modeller (http://spdbv.vital-it.ch/)
refine (http://www.cbs.dtu.dk/biotools/Refine/)
KobaMin (http://csb.stanford.edu/kobamin/)
Modeller (https://salilab.org/modeller/)
refine (http://www.cbs.dtu.dk/biotools/Refine/)
ModRefiner (http://zhanglab.ccmb.med.umich.edu/ModRefiner/)
Summary

✓ Re-model the **important loops**

✓ Use **loop libraries** for short loops

✓ If no template or loop too long, use **loop closure**

✓ **Refinement** is often needed but

✓ **No improvement** expected

✓ Refine as little as you can!