Ch 9: Cellular Pathways that Harvest Chemical Energy

1. Show, using a diagram, what happens in a redox reaction. Explain briefly.

2. Redox-reactions between metabolites in living cells are often coupled using mobile electron carriers. Name the two most important mobile electron carriers (A and B) in energy metabolism. A is water soluble and is found in the cytoplasm, while B is lipid-soluble and is found in the cell membrane in bacteria, and the mitochondrial inner membrane of eukaryotes.
 A:
 B:

3. Suggest reactions that do not involve oxidation or reduction, but where energy is released.

4. What is the term “substrate-level phosphorylation” used to describe, and where/when is this process particularly important?

5. How does a muscle cell benefit from producing lactic acid, and when does this occur?

6. Explain which of the following statements about the citric acid cycle are correct:
 - occurs in mitochondria
 - does not produce ATP
 - has no connection with the respiratory chain
 - is the same as fermentation

7. In a simplified representation, glycolysis is often represented by an arrow, the citric acid cycle by a circle and the most important substrates and products are given. Add the most important substrates and products to this drawing:

 glucose
8. Several enzymes in glycolysis and the citric acid cycle are allosterically regulated.
 - How does allosteric regulation function?
 - Why is it advantageous for the cell, that enzymes in these pathways are activated by AMP and ADP or are inhibited by ATP?
 - Why is it advantageous for the cell, that enzymes in the citric acid cycle are activated by NAD$^+$ or are inhibited by NADH?

9. Which of the following possibilities give the greatest energy yield to an animal cell, if it has sufficient NAD$^+$ and ADP, but neither NADH or ATP (explain your answer):
 1) The addition of x mol ATP
 2) The addition of x mol NADH

10. Label the missing molecules on the following diagram of the respiratory chain:
11. How do cells attain redox balance (ratio between oxidation and reduction) during respiration and fermentation, respectively?

12. Explain the difference in ATP production per glucose by:
 a) substrate-level phosphorylation
 b) respiration.

13. Commitment step
 a) What is "the commitment step"?
 b) Why is the commitment step usually the step in a pathway that is subject to regulation?
 c) Which reaction is the commitment step for glycolysis?
 d) Which enzyme catalyses this reaction, and how is it regulated?

Example exam questions

1. Which of the following statements about the respiratory chain are correct?
 - occurs in mitochondria
 - uses O₂ as oxidising agent
 - regenerates oxidising agents for glycolysis and the citric acid cycle
 - occurs at the same time as fermentation

2. Sketch the position of ATP synthase in the mitochondrial membrane and briefly describe the function of the enzyme.

3. Where in a eukaryotic cell do the following occur?
 a) citric acid cycle?
 b) glycolysis?
 c) elektron transport chain?
4. The following reactions may occur, after a polysaccharide has been broken down to monosaccharides like glucose:

 Reaction 1: phosphoenolpyruvate → pyruvate
 Reaction 2: pyruvate → lactate

Explain briefly the significance of each of these reactions for the energy metabolism of the cell.

 Reaction 1:
 Reaction 2:

5. Reaction: RCH₂OH + NAD⁺ ↔ RCHO + NADH, H⁺

 a. State which is the reduced and oxidized form of each molecule in this reaction.

 b. What does the abbreviation "NAD⁺" stand for?

6. Glucose can be converted by our metabolism to CO₂ and H₂O. Is the overall reaction an oxidation or reduction? Explain your answer.